
CONVECTIVE DRYING OF DISPERSE MATERIAL IN 

AGITATED LAYER IN CROSS FLOW OF COOLANTS 

G. D. Rabinovich 

AN 

UDC 66.047.37 

A mathematical  descript ion is given of the process ,  and the relationship between the tem-  
pera ture  and the mois ture  content of the mater ia l  is established; a formula is derived to 
determine the equipment s ize  for  a prespecified amount of mois ture  to be removed.  

A method of calculating the kinetics of the process  of convective drying of thin mater ia ls  in direct  
flow and countercurrent  flow of the mater ia l  :~ be dried and the drying agent has been presented [1], the 
principal feature of the method being the introduction of an external m a s s - t r a n s f e r  effectiveness factor  
expressing that fract ion of the total amount of heat delivered to the mater ia l  which is used up in evaporating 
mois ture  f rom the material .  

This method is extended, in the present  art icle,  to calculations of the kinetics of drying in an agitated 
layer  of granular  material .  The process  equipment is shown in schematic  form in Fig. 1. 

The case of heat t ransfer  complicated by mass  t ransfer  with c ross  flow of the hea t - t ransfer  media 
(coolants), one of which is agitated in planes perpendicular to its flow, is considered here. 

The simplifying assumptions entertained in our t reatment  reduce to the following: 

1. The tempera ture  of the mater ia l  is a function of the longitudinal coordinate alone, i.e., t" = f(x), 
because of intense mixing. 

2. Heat t ransfer  between part icles  of the mater ia l  and of the gas does not occur in the direction of 
the x axis. 

Stationary heat t ransfer  in c ross  flow at a 90 ~ angle, with one of the coolants present  (the mater ia l  
i tself in this case) and evenly distributed throughout the volume of the heat source,  is described by the 
following sys tem of equations [2]: 

at" St" 

as., (t' - -  t") + q~ Or" Oi" 
c~od~ P2 = w2~ c)--x + w2y Oy ' 

(1) 

where Wix and Wiy are  the components of the flow velocity along the coordinate axes. 

By hypothesis in this problem, Wlx = W2y = 0, and the per imeter  is related, by definition, to the 
hea t - t rans fe r  surface by the equations 

sldg = dFy; s2dx ~ dF~. 

The hea t - t r ans fe r  surface  can be expressed in t e rms  of the mean values of the specific surface a rea  
aav  and the volume (bulk) mass  of the mater ia l  P~v as follows: on the 0 - x interval 

x ~ bHLpa v x ,, x 
Fx ~- ~ -~ ~ 2 = ~ b ~  -- (YavPaO/~ - -  ; 

ngav 2 L L 
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and on the 0 - y  in terva l  

. L G Y bHLpav y ~-OavPaVo y 
Fv = ~ = ~ 2.av -H- = r "bnPa~W 2 H H 

Then, by convert ing to d imens ionless  va r iab les ,  and recal l ing,  as demonst ra ted  in [3], that f2/s~ = 1/crp",  
and a lso  q2 = crp"ae (t' - t") [1], we find that 

O' 1 " R~ dO" = .  - - 0  , (2)  
1 + e dr= 

0 " - - 1 - - 0 ' ~  Off (2a) 
Ov u 

That s y s t e m  of equations is valid for a drying p rocess  during which the external  m a s s - t r a n s f e r  ef fec t iveness  
fac tor  r ema ins  constant. It  has been shown [1] that the en t i re  p rocess  can be broken up into a s e r i e s  of 
s tages  (not m o r e  than three  or four in pract ice) ,  in order  to mee t  that condition, in each of which s tages  
the va r i ab le  e, as  well  as  the h e a t - t r a n s f e r  coefficient ~, can be t rea ted  with reasonable  accuracy  as con-  
s tants  equal to the i r  mean  values in the par t icu la r  stage. 

By averaging  Eq. (2) with r e s pec t  to the coordinate  Vy, and taking the f i r s t  of the above assumpt ions  
into account,  we get 

O' = I - -  O" R21 dO" 
1 + e 0vx . (3)  

By solving Eq. (2a) under the condition 0'IVy=0 = 0, we get 

01 = (1 --05(1 - -  e-~ (4) 

and hence the ave rage  gas t e m p e r a t u r e  taken over  the height of the bed is de termined as  

0' = (1- -  0") [1 - 1 (1 e-v)] 
O 

(5) 

where  v co r responds  to the total h e a t - t r a n s f e r  su r face  a r ea  on that port ion of the equipment. 

The t e m p e r a t u r e  of the gas at the exit f rom the bed is de termined f r o m  Eq. (4) by replac ing  Vy = v, 
i .e. ,  

0'K = (I - -  0")(1 - -  e -P) .  (6)  

The heat supplied to the ma te r i a l  is used up in heating the ma te r i a l  and in evaporat ing moi s tu re  f rom 
the ma te r i a l ,  i .e . ,  

q = q. + O ~  Q . "  ~q; 

The va r iab le  Q is determined f r o m  the fo rmula  

(I + @ Q  =Q.. (7) 

v 

Q = --W1 t'~ - -  tH)dv~, 
U 

0 

which, with Eq. (6) taken into account,  becomes  

Now since 

O = W,v (1 - - eY~) ( t " - -  t~) j '  (1 --O")dv~. (8) 

0 

C c dQH = c262dt" = ( ~ + cv~  6~It", (9) 

this express ion  can be in tegrated only when the t e m p e r a t u r e  dependence of the moi s tu re  content is known. 

The amount of m o i s t u r e  to be removed  f r o m  the m a t e r i a l  on the in te rva l  0 - x is 

x H v x v 

.fS G~(un- -u  ) = - -  s-~-aop"b ( t ' - - t " ) d x d y - -  e W:_ ( t '~-- t~)  (1- -O' - -O")dv~dv , .  (10) 
F r 73 

o o o o 
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get 
Replacing the expression in parentheses by its value taken from Eq. (2a), and recall ing Eq. (6), we 

O. 

cCD~ " -- ~ (  0") u - = u  H + e  2a12(tH--t~)(1 e -~) 1-- dG, 

0 

and hence 

~x 

cc - c ~ ~--- (1 - -  e-o) (1 - -  0") dv x . ~ + c z u = c ~ R 1 2 ( 1  + e )  X ,  v 

0 

Substituting the result ing expression into Eq. (9), we find 

0" vx 

QH: WI (t:- t:)(1 + e ) ; { X -  ~ - ( 1 -  e -v) ; ( 1 -  0")dye} dO". (11) 
0 0 

After substitution of the values of Q and Qtt in Eq. (7), and recall ing Eqs. (8) and (11), we obtain the equa- 
tion 

Vx v x v x 

(1 e -~) -- dv~ v ~, - -  - -  (1 -- e -v) (1 -- 0') dv~l - - d v x  
V ] dv x 

0 0 0 

Vx v x 

---- O" {vL - -  • (l - -e-r ' )  ~' (1 - -O")  dvx} -t- • ( 1 - - e - v )  ; O" ( 1 - -  O") dvx, 

0 0 

in which the right-hand part is t ransformed by integration by parts. 

After reducing s imi lar  te rms,  

v Vx 

(1 -- e-9(1 + • ; (1 -- 0") dv x : vX0" 4- • (1 -- e- 9 J' 0" (1 -- 0") dye. 
0 0 

We then differentiate the result ing expression with respect  to Vx: 
vx 

j '  1 -- 0" 
v~ - -  • ( 1 - - e  -v) ( 1 - -  0") dv x = ( l - -  e -~ dO"/dv-~ 

0 

Then, af ter  repeating the differentiation, we end up with the nonlinear equation 

d ~ 0  " 

dv~ 

1 - - +  
1--0" 

•  dO" ]2=0 ' (12) 
\ dv~ / 

The f i rs t  boundary condition which must be satisfied by the solution of Eq. (12) is 

0"l~x= = 0. (13) 

The second boundary condition can be obtained f rom Eq. (3), if 0' is replaced in that equation by the 
value from Eq. (5), viz.,  

dvxdO" vx=~ = 1(lv + s)RI~" (1--e-V) = i +eev R2tc (11 --e  - ' +  cvu./c2)- ~ = ;~vl (1, - - e -  9.  (14) 

By introducing the new variable z = d0"/dvx,  we obtain, instead of Eq. (12), the equation 

dz ( 1  ) 
- -  x z:O, 

' dO" + 1 - - 0 "  

the solution of which, with the t ransformed constraint (14) 

1 
z l e - = o  = . ~  (1 - -  e - ~  ~ v  
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Fig .  1. D i a g r a m  of equ ipmen t  wi th  m i x e d  l a y e r  of d i s p e r s e  
m a t e r i a l .  The  d r y i n g  p r o c e s s  i s  b r o k e n  down into s t a g e s  
d e s i g n a t e d  by  R o m a n  n u m e r a l s .  The  z e r o  va lue  of the  c o o r -  
d ina te  x c o r r e s p o n d s  to the  beg inn ing  of the  s t a g e  in  ques t ion .  

:-c~ o 
z = - -  0") exp (~O") 

or ,  wi th  t he  r e p l a c e m e n t  of z by i t s  v a l u e  

exp [• (1 - -  O")] 

• (I - - o " )  
d [ ~ ( 1 - - 0 " ) l =  exp~ ( l _ e l )  dvx. (15) 

~v 

Upon so lv ing  Eq. (15), wi th  the  c o n s t r a i n t  (13), we  end up wi th  

(1 - - e  -~ vx - Xe-~ {El (• - - E l  [• (1 - -  0")]}. (16) 
O 

At  the  end of  the  i n t e r v a l  v x = v and 0" = Of( of i n t e r e s t  h e r e ,  i . e . ,  

1 - -  e - v  = Xe - ~  {El  (• - -  Ei [• (1 - -  O")]}. (16a) 

If we  m a k e  u s e  of the  r e p r e s e n t a t i o n  of the  i n t e g r a l  exponen t i a l  funct ion  in  the  f o r m  of a s e r i e s ,  then  
the  e x p r e s s i o n  in  the  b r a c e s  in  Eq. (16) w i l l  a c q u i r e  the  f o r m  

1 " ~ ,  •  - - ( 1  - -  O")nl 
Ei (• - -  Ei [• (1 - -  O")] = In 1 - -  0 --.----7- '  + ~ n n !  

n = l  

It i s  c l e a r  f r o m  th i s  l a s t  f o r m u l a  tha t ,  when ~ = 0, i . e . ,  when t h e r e  i s  no m o i s t u r e  in  t he  m a t e r i a l ,  
Eq. (16a) t r a n s f o r m s  to 

R~2 (1 - -  e - v )  = - -  In (1 - -  0"), (16b) 

i . e . ,  to a f o r m u l a  f a m i l i a r  f r o m  the t h e o r y  of r e g e n e r a t o r s  fo r  c r o s s  f low hea t  e x c h a n g e r s  wi th  mix ing  of 
one of the  h e a t - t r a n s f e r  med ia .  

" and v. A c c o r d i n g l y ,  in  o r d e r  t o  d e t e r m i n e  t h e s e  v a r i a b l e s  Equat ion  (16a) i n c l u d e s  two unknowns,  O K 

we have  to f ind s o m e  o the r  equa t ion  r e l a t i n g  them,  which  can  be d e r i v e d  f r o m  Eq. (10) by  r e p l a c i n g  the  d i f -  
f e r e n c e  1 - 0 w in  the  i n t e g r a n d  by  i t s  v a l u e  f r o m  Eq. (15). Then,  a f t e r  i n t e g r a t i n g  and m a k i n g  s o m e  t r a n s -  
f o r m a t i o n s ,  we ge t  

= @Z + u=)(1--e-~~ (17) 

i . e . ,  t he  r e l a t i o n s h i p  be tween  the v o l u m e - a v e r a g e  m o i s t u r e  conten t  and the  t e m p e r a t u r e  of the  m a t e r i a l .  

The N e t  tha t  Eq. (17) i s  i d e n t i c a l  to an  ana logous  f o r m u l a  c i ted  in  [1] fo r  the  c a s e  of d i r e c t  f lew of 
h e a t - t r a n s f e r  m e d i a  i s  qu i t e  s t r i k i n g .  Th is  i s  e v i d e n c e  tha t  r e l a t i o n s h i p s  of th i s  type ,  e s t a b l i s h i n g  the 
exponen t i a l  b e h a v i o r  of the  d e p e n d e n c e  of the  m o i s t u r e  conten t  of a m a t e r i a l  on the  t e m p e r a t u r e  of tha t  
m a t e r i a l ,  m u s t  be  t r e a t e d  a s  a g e n e r a l  r e g u l a r i t y  in  the  p r o c e s s  of convec t ive  d r y i n g  of  th in  m a t e r i a l s .  

F r o m  P_ZlS. (16a) and (17), we can  ob ta in  the  above  unknowns fo r  the  t e m p e r a t u r e  of the  m a t e r i a l  a t  
the  end of  the  r e l e v a n t  s t a g e  of d r y i n g  and of the  d i m e n s i o n l e s s  h e a t - t r a n s f e r  s u r f a c e  a t  tha t  s t age .  
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If we introduce the notation 

1 - -  c~/cz § u - 
�9 ~ [ A * ,  

c~/c i +  u~ 

then formula  (17) can be r e c a s t  in a different  form:  

O~ = - - - - 1  In (1 - -  u~, ): 
• 

The specif ic  flow r a t e  of a i r  per  k i logram of evapora ted  mois tu re  can be expres sed  as  follows: 

c 
l -  G1 ~- c2 1 

On the other  hand, 

(18) 

(19) 

1 
l - -  

deav - -  d 1 

where  d2a v and d t a r e  r e spec t i ve ly  the a v e r a g e  mo i s tu re  content of the a i r  exiting f r o m  the equipment on 
that port ion of the drying route and the m o i s tu r e  content of the a i r  enter ing the bed. 

F r o m  the f i r s t  two re la t ions ,  we obtain 

)~ Cl d2av-- d 1 
- ,  (20) 

C I /./~ 

The calculat ions mus t  be ca r r i ed  out in the following sequence. 

On the bas i s  of the exper imenta l  data, the ent i re  drying p rocess  is broken up into s tages  for  each 
of which the var iab le  ui~ is de te rmined  accord ing  to Eq. (18), and the value of the external  h e a t - t r a n s f e r  
ef fec t iveness  coefficient  is a lso  de te rmined  on the bas i s  of the fo rmula  

e = [cz (t~ ~ to) tg ~]/r - -  1, (21) 

1 + [o z (t~, - -  g)  tg ~}/r  

where  

tg q~ = d [T"/(T'~ - -  To)l/d In [(c~ -k c z o)/(c2 + c z .u)]. 

Equation (21) is m o r e  convenient to use  than the analogous formula  found in [1], in that it genera l izes  
the r e su l t s  of the exper iments  ca r r i ed  out at different  init ial  t e m p e r a t u r e  of the drying agent. 

It 
The known v~alues of e, as  well  as the values  of t~  and tH, a r e  used to calculate  the value of the 

p a r a m e t e r  z and, on the bas i s  of gq. (19), the t e m p e r a t u r e  of the ma te r i a l  at the end of the s tage in ques -  
tion, 0i~. 

Since the mean  t e m p e r a t u r e  of the drying agent at the exit f r o m  the bed 

0a 
1 l'O'KdO,, ' 

0 

then, taking Eq. (6) into account,  we have 

0:.av= (1 - -e  -~') ( I -  -~  O: ') .  (22) 

When the ave r age  moi s tu re  content of the drying m e d i u m ,  exiting f rom the bed d2a v has been specified,  the 
value of ~ is found f r o m  Eq. (20), which makes  it poss ible  to use  Eq. (16a) to find the value of the d imen-  

T 
s ionless  coordinate v, which is designated V06a). On the other hand, the known values of d2av, dl, and t H 
can be used, on the bas i s  of the J -  d d iagram,  to de te rmine  0' n . ,  and it a lso  becomes  possible  to find 

Z .  ~ v  
the d imens ionless  coordinate  v(2~) f r o m  Eq. (22), once they areknown.  

Clear ly,  equali ty must  prevai l  in the constra int  

v(~6a) -~--- v(2~), (23) 
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which can be ar r ived at through a judicious choice of the average  final mois ture  content of the drying 
agent upon exit f rom the bed, d2a v. Substitution of that value into Eq. (20) yields the definitive value Of ~, 
and on the basis of the determination of that parameter  (see definitions), the specific heat of the drying 
agent 

The value of W l must  be verified, 
dynamic conditions in the bed. 

2 Cl  

C2 
(24) 

subsequently, f rom the standpoint of bringing about the required hydro-  

By totalling the values of v for all the intervals  in question, we can find the required dimensions 
of the equipment with ease. It is assumed then that the hea t - t ransfer  coefficient is an unknown to be de- 
termined f rom Eq. (16a) by setting up pre l iminary  experiments generalized by a corresponding cri t ical  
equation. 

It is important  and mandatory to emphasize the fact that the computational method proposed is of 
in teres t  solely in the case  where the external m a s s - t r a n s f e r  effectiveness coefficient does not depend 
appreciably on process  condition factors.  As demonstrated by Lykov [6, pp. 131-132], that condition is 
met quite closely in the case of tMn mater ia ls ,  and the cr i t ical  Rb introduced in [4, 5] and related to 
by the s traightforward relat ionship Rb = 1/(1 + a), is only a function of the mo i s tu re  content of the ma -  
terial.  This makes it possible to limit the inquiry to setting up only one experiment to find the unknown e. 

t 
W 

P 
fl = bL; 
f2 = bH; 
L, H 
b 
S 

F x 

Fy 
(Y 

G w 

G2 
V 0 = bilL; 

N O T A T I O N  

is the hea t - t rans fe r  coefficient; 
is the external m a s s - t r a n s f e r  efficiency factor;  
is the temperature ;  
is the flow speed of hea t - t rans fe r  medium; 
is the density; 

see Fig. 1; 
is the width of equipment; 
is the per imeter  of hea t - t rans fe r  surface;  
is the hea t - t r ans fe r  surface f rom entry point of mater ia l  into interval of in teres t  to the c ross  
section x; 
is the same, f rom entry point of drying medium into bed out to the c ross  section y; 
is the surface area  presented by a unit mass  of the mater ia l  to be dried; 
is the mass  of mater ia l  filling the equipment on the drying interval  of interest ;  
is the mass  flow rate  of mater ia l ;  

0' = (t~ - t ') / (t~i - t~); 
0" =(t"  tH)/( t  H - t H ) ;  
R21 = W2/Wl; 
W = cG is the specific heat of hea t - t rans fe r  medium; 

WC= c c c2 G2 ; 
v x = ~ ~ a v P ~ v V 0 x / L W l ;  
Vy = ~ O-avP~tvV0Y / HW 1; 
p" is the bulk mass  of material ;  

v = Vxlx= L = Vyly=H; 
is the mois ture  content of mater ia l  to be dried; U 

UH 
r 

U *  

is the mois ture  content at point of entry of mater ia l  into equipment; 
is the mois ture  content at point of entry of mater ia l  to be dried into interval  of interest ;  
is the heat of vaporization; 

- t ~ ) / r  (1 + 0 ;  
c l~  H / c~) / (i + O; 
see Eq. (18); 
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c I is the specif ic  heat of liquid removed  f r o m  ma te r i a l  being dried; 
x, y a r e  the coordinates .  

S u b s c r i p t s  

1, 2 denote the drying medium and ma te r i a l  to be dried;  
', " denote the drying medium and m a t e r i a l  to be dried; 
H denotes the initial  value at  point of entry  to in terva l  of in teres t ;  
K denotes the final value at point of exit f r o m  in terval  of in teres t ;  
av  denotes the ave r age  taken over  the in terva l  of in teres t .  

S u p e r s c r i p t  

e denotes the value for  absolute ly  dry mate r ia l .  

i. 

2. 

3. 

4. 

5. 

6. 
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