CONVECTIVE DRYING OF DISPERSE MATERIAL IN AN
AGITATED LAYER IN CROSS FLOW OF COOLANTS

G. D. Rabinovich UDC 66.047.37

A mathematical description is given of the process, and the relationship between the tem-
perature and the moisture content of the material is established; a formula is derived to
determine the equipment size for a prespecified amount of moisture to be removed.

A method of caleulating the kinetics of the process of convective drying of thin materials in direct
flow and countercurrent flow of the material (> be dried and the drying agent has been presented [1], the
principal feature of the method being the introduction of an external mass-transfer effectiveness factor
expressing that fraction of the total amount of heat delivered to the material which is used up in evaporating
moisture from the material.

This method is extended, in the present article, to calculations of the kinetics of drying in an agitated
layer of granular material. The process equipment is shown in schematic form in Fig. 1.

The case of heat transfer complicated by mass transfer with cross flow of the heat-transfer media
(coolants), one of which is agitated in planes perpendicular to its flow, is considered here.

The simplifying assumptions entertained in our treatment reduce to the following:

1, The temperature of the material is a function of the longitudinal coordinate alone, i.e., t" =£(x),
because of intense mixing.

2, Heat transfer between particles of the material and of the gas does not occur in the direction of
the x axis.

Stationary heat transfer in cross flow at a 90° angle, with one of the coolants present (the material
itself in this case) and evenly distributed throughout the volume of the heat source, is described by the
following system of equations [2]:
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where wjy and Wiy are the components of the flow velocity along the coordinate axes.

By hypothesis in this problem, wiyx = woy = 0, and the perimeter is related, by definition, to the
heat-transfer surface by the equations
s,dy = dF ;s =dF,.

The heat-transfer surface can be expressed in terms of the mean values of the specific surface area
04y 2nd the volume (bulk) mass of the material Pl as follows: on the 0 —x interval

. bHLp,,
Fro=0,0x =0, 0py—— =0,0 Pay %

X G p/'\y x
2av " = 0 ’
w, 2V RVbHgrw, L AaVeTp

Institute of Heat and Mass Transfer of the Academy of Sciences of the Belorussian SSR, Minsk.
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 18, No. 2, pp. 278-285, February, 1970. Original
article submitted April 17, 1969.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

201



and on the 0 —y interval
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Then, by converting to dimensionless variables, and recalling, as demonstrated in [3], that f,/s, =1/0p",
and also g, = op"ae (t'—t") [1], we find that
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That system of equations is valid for a drying process during which the external mass-transfer effectiveness
factor remains constant, It has been shown [1] that the entire process can be broken up into a series of
stages (not more than three or four in practice), in order to meet that condition, in each of which stages

the variable €, as well as the heat-transfer coefficient o, can be treated with reasonable accuracy as con-
stants equal to their mean values in the particular stage.

By averaging Eq. (2) with respect to the coordinate vy, and taking the first of the above assumptions
into account, we get
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By solving Eq. (2a) under the condition 0'|Vy:0 =0, we get
0" = (1 — ")l —e™), (4
and hence the average gas temperature taken over the height of the bed is determined as

7 =(—8 [1 ~—La —e‘")] , (5)
[

where v corresponds to the total heat-transfer surface area on that portion of the equipment.

The temperature of the gas at the exit from the bed is determined from Eq. (4) by replacing Vy =V,
i.e.,

B = (1 — 071 —e™). (6)

The heat supplied to the material is used up in heating the material and in evaporating moisture from
the material, i.e.,
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The variable Q is determined from the formula
v
=Y S (e — £)do,,
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which, with Eq. (6) taken into account, becomes
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Now since
dQ, = c,Gydt” = (c§ + ¢ .u) Gadt', (9

this expression can be integrated only when the temperature dependence of the moisture content is known.

The amount of moisture to be removed from the material on the interval 0 —x is
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Replacing the expression in parentheses by its value taken from Eq. (2a), and recalling Eq. (6), we
get
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and hence
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Substituting the resulting expression into Eq. (9), we find
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After substitution of the values of @ and Qyy in Eq. (7), and recalling Egs. (8) and (11), we obtain the equa-
tion
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in which the right-hand part is transformed by integration by parts.

After reducing similar terms,

(1 —e™)(1 4+ %8") j“(l — 6" do, = 0M" + % (1l —e?) j 6" (1 —0") dv,.
1] 0

We then differentiate the resulting expression with respect to vy:
Ux
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Then, after repeating the differentiation, we end up with the nonlinear equation
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The first boundary condition which must be satiéfied by the solution of Eq. (12) is
8o~ =0. (13)

The second boundary condition can be obtained from Eq. (3), if ' is replaced in that equation by the
value from Eq. (5), viz.,

do”
dvx mx=0

1 _ 1-+e 1—e™ 1 _
= —(1 ] —¢& % = _ = — (1 —e ). (14)
” (148 Rygy (1 —¢77) v R F oo ol )

By introducing the new variable z = dg"/dvy, weobtain, instead of Eq. (12), the equation

dz 1
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the solution of which, with the transformed constraint (14)
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Fig. 1. Diagram of equipment with mixed layer of disperse
material. The drying process is broken down into stages
designated by Roman numerals. The zero value of the coor-
dinate x corresponds to the beginning of the stage in question.

will be
1—e™

2= (1 —0") exp (x0")

or, with the replacement of z by its value

_expx(1—87] Al (] — 8] =
(1 =)

Upon solving Eq. (15), with the constraint (13), we end up with

_EXPY (1~ do,. (15)
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14
At the end of the interval vy = vand §" = ¢, of interest here, i.e.,

1 — &2 = he—*{Ei (%) — Ei [z (1 — 6"]}. (16a)

If we make use of the representation of the integral exponential function in the form of a series, then
the expression in the braces in Eq. (16) will acquire the form

1 xY ®*[1—(1—8"]
1—6”+§ nn!

It is clear from this last formula that, when % = 0, i.e., when there is no moisture in the material,
Eq. (16a) transforms to

Ei(x) —Ei[x (1 — 0"} =In

Rp(l—e™®) =—In(1—¥), (16b)

i.e., to a formula familiar from the theory of regenerators for cross flow heat exchangers with mixing of
one of the heat-transfer media.

Equation (16a) includes two unknowns, Gi'( and v. Accordingly, in order to determine these variables

we have to find some other equation relating them, which can be derived from Eq. (10) by replacing the dif-
ference 1 — 9" in the integrand by its value from Eg. (15). Then, after integrating and making some trans-
formations, we get

I

p— / cC -— o
U= ( Cil+ uﬂ)(l—e—uﬂ ), (17
i.e., the relationship between the volume-average moisture content and the temperature of the material.

The fact that Eq. (17) is identical to an analogous formula cited in [1] for the case of direct flow of
heat-transfer media is quite striking. This is evidence that relationships of this type, establishing the
exponential behavior of the dependence of the moisture content of a material on the temperature of that
material, must be treated as a general regularity in the process of convective drying of thin materials.

From Egs. (16a) and (17), we can obtain the above unknowns for the temperature of the material at
the end of the relevant stage of drying and of the dimensionless heat-transfer surface at that stage.
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If we introduce the notation

] — _Cz/_cij::”_ = u*, (18)
cs/c ;i
then formula (17) can be recast in a different form:
” ], % i
O = ——1In {1 — u)! (19
x

The specific flow rate of air per kilogram of evaporated moisture can be expressed as follows:
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On the other hand,
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where dygy and d; are respectively the average moisture content of the air exiting from the equipment on
that portion of the drying route and the moisture content of the air entering the bed.

From the first two relations, we obtain

Ll (20)

o Uy
The calculations must be carried out in the following sequence.

On the basis of the experimental data, the entire drying process is broken up into stages for each
of which the variable ufg is determined according to Eq. (18), and the value of the external heat-transfer
effectiveness coefficient is also determined on the basis of the formula

[y (ta— ) tgwlr (21)
1+ ley (ba— to) 1g 9l/r

where

tg@ = d [T"/(Tw— Tol/d In[(c5 + ¢, u/(cs + ¢, D).

Equation (21) is more convenient to use than the analogous formula found in [1], in that it generalizes
the results of the experiments carried out at different initial temperature of the drying agent.

The known values of ¢, as well as the values of th and tﬂI, are used to calculate the value of the
parameter » and, on the basis of Eq. (19), the temperature of the material at the end of the stage in ques-

tion, Og-

Since the mean temperature of the drying agent at the exit from the bed

;
Ox. av =

L {0 a0,
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then, taking Egq. (6) into account, we have
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When the average moisture content of the drying medium exiting from the bed dyyy has been specified, the
value of A is found from Eq. (20), which makes it possible to use Eg. (16a) to find the value of the dimen~
sionless coordinate v, which is designated v(j¢q). On the other hand, the known values of dyyy, dy, and t'H
can be used, on the basis of the J —d diagram, to.determine 91'{. av’ and it also becomes possible to find
the dimensionless coordinate v (22) from Eq. (22), once they are known.

Clearly, equality must prevail in the constraint

Viga) < Ygaa) (23)



which can be arrived at through a judicious choice of the average final moisture content of the drying
agent upon exit from the bed, dyqy. Substitution of that value into Eq. (20) yields the definitive value of A,
and on the basis of the determination of that parameter (see definitions), the specific heat of the drying
agent

WJ=Y3(1+—C~Z—EH>- (29)
A &

The value of W; must be verified, subsequently, from the standpoint of bringing about the required hydro-
dynamic conditions in the bed.

By totalling the values of v for all the intervals in question, we can find the required dimensions
of the equipment with ease. It is assumed then that the heat-transfer coefficient is an unknown to be de-
termined from Eq. (16a) by setting up preliminary experiments generalized by a corresponding critical
equation.

It is important and mandatory to emphasize the fact that the computational method proposed is of
interest solely in the case where the external mass-transfer effectiveness coefficient does not depend
appreciably on process condition factors. As demonstrated by Lykov [6, pp. 131-132], that condition is
met quite closely in the case of thin materials, and the critical Rb introduced in [4, 5] and related to €
by the straightforward relationship Rb =1/ (1 + €), is only a function of the moisture content of the ma-
terial. This makes it possible to limit the inquiry to setting up only one experiment to find the unknown €.

NOTATION
a is the heat-transfer coefficient;
£ is the external mass-transfer efficiency factor;
t is the temperature;
W is the flow speed of heat-transfer medium;
P is the density;
£, = bL;
fy = bH;
L, H see Fig. 1;
b is the width of equipment;
s is the perimeter of heat-transfer surface;
Fy is the heat-transfer surface from entry point of material into interval of interest to the cross
section x;
Fy is the same, from entry point of drying medium into bed out to the cross section v
o is the surface area presented by a unit mass of the material to be dried;
G" is the mass of material filling the equipment on the drying interval of interest;
Gy is the mass flow rate of material;
V, = bHL;

9" = (th—t')/(ti{,—tf{);
9" = (" — tfp)/ (ty — tiDs

Ro1 = Wy/Wy;

W =cG is the specific heat of heat-transfer medium;
R$ =1/RE = W§/Wy;

W§ = cSGS;

Vx = a0ayPayVex/ LWy;
Vy = aOayPayVey/HWy;

ph" is the bulk mass of material;

V=vglx=1, = Vy|y=H;

u is the moisture content of material to be dried;

EO is the moisture content at point of entry of material into equipment;

HH is the moisture content at point of entry of material to be dried into interval of interest;
T is the heat of vaporization;

= epelty —tE)/rd + €);
A=R§1(1 + ClﬁH/czc)/(l + €);
u* see Eq. (18);
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¢y is the specific heat of liquid removed from material being dried;
X, y are the coordinates.
Subscripts

1, 2 denote the drying medium and material to be dried;
1. " denote the drying medium and material to be dried;

H denotes the initial value at point of entry to interval of interest;
K denotes the final value at point of exit from interval of interest;
av denotes the average taken over the interval of interest.

Superscript

c denotes the value for absolutely dry material.
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